An algebraic approach for decoding spread codes

نویسندگان

  • Elisa Gorla
  • Felice Manganiello
  • Joachim Rosenthal
چکیده

We present a family of constant–dimension codes for random linear network coding called spread codes. This is a family of optimal codes with maximum minimum distance. A spread code is constructed starting from the algebra defined by the companion matrix of an irreducible polynomial. We give a minimum distance decoding algorithm that is particularly efficient when the dimension of the codewords is small. The decoding algorithm takes advantage of the structure of the algebra and it uses an original result on minors of a matrix and the factorization of polynomials over finite fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

Geometric decoding of subspace codes with explicit Schubert calculus applied to spread codes

This article is about a decoding algorithm for error-correcting subspace codes. A version of this algorithm was previously described by Rosenthal, Silberstein and Trautmann [17]. The decoding algorithm requires the code to be defined as the intersection of the Plücker embedding of the Grassmannian and an algebraic variety. We call such codes geometric subspace codes. Complexity is substantially...

متن کامل

On the efficient decoding of algebraic-geometric codes

This talk is intended to give a survey on the existing literature on the decoding of algebraic-geometric codes. Although the motivation originally was to find an efficient decoding algorithm for algebraic-geometric codes, the latest results give algorithms which can be explained purely in terms of linear algebra. We will treat the following subjects: 1. The decoding problem 2. Decoding by error...

متن کامل

Quasi-cyclic LDPC codes with high girth

The LDPC codes are codes that approach optimal decoding performances, with an acceptable decoding computational cost ([1, 2, 3]). In this paper we present a class of quasi-cyclic LDPC codes and we show that we are able to guarantee some relevant properties of the codes. Experimentally, their decoding performance is comparable with the performance obtained by random LDPC codes. Traditionally, co...

متن کامل

Optimal rate list decoding of folded algebraic-geometric codes over constant-sized alphabets

We construct a new list-decodable family of asymptotically good algebraic-geometric (AG) codes over fixed alphabets. The function fields underlying these codes are constructed using class field theory, specifically Drinfeld modules of rank 1, and designed to have an automorphism of large order that is used to “fold” the AG code. This generalizes earlier work by the first author on folded AG cod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. in Math. of Comm.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012